MRF-based Algorithms for Segmentation of SAR Images

نویسندگان

  • Robert A. Weisenseel
  • W. Clem Karl
  • David A. Castañón
  • Richard C. Brower
چکیده

In this paper we demonstrate a new method for Bayesian image segmentation, with specific application to Synthetic Aperture Radar (SAR) imagery, and we compare its performance to conventional Bayesian segmentation methods. Segmentation can be an important feature extraction technique in recognition problems, especially when we can incorporate prior information to improve the segmentation. Markov Random Field (MRF) approaches are widely studied for segmentation, but they can be computationally expensive and, hence, are not widely used in practice. This computational burden is similar to that seen in the statistical mechanics simulation of simple MRF models such as certain magnetic models. Recently, Swendsen and Wang and others have had great success accelerating these simulations using so-called “cluster” Monte Carlo methods. We show that these cluster algorithms can provide speed improvements over conventional MRF methods when the MRF prior model has sufficient weight relative to the observation model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GPU-accelerated MRF segmentation algorithm for SAR images

Markov Random Field (MRF) approaches have been widely studied for Synthetic Aperture Radar (SAR) image segmentation, but they have a large computational cost and hence are not widely used in practice. Fortunately parallel algorithms have been documented to enjoy significant speedups when ported to run on a graphics processing units (GPUs) instead of a standard CPU. Presented here is an implemen...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

SAR Sea Ice Recognition Using Texture Methods

With the development of remote sensing techniques, a vast amount of SAR sea ice imagery is being provided by satellite platforms. As an important aspect of measurement, monitoring, and understanding of sea ice evolution during the seasons, the generation of ice type maps is a fundamental step in the interpretation of these data. The abundant texture information in SAR imagery is useful for segm...

متن کامل

Integration of synthetic aperture radar image segmentation method using Markov random field on region adjacency graph

A novel approach to obtain precise segmentation of synthetic aperture radar (SAR) images using Markov random field model on region adjacency graph (MRF-RAG) is presented. First, to form a RAG, the watershed algorithm is employed to obtain an initially over-segmented image. Then, a novel MRF is defined over the RAG instead of pixels so that the erroneous segmentation caused by speckle in SAR ima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998